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Rectification by hopping motion through nonsymmetric potentials with strong bias
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Hopping motion of particles on linear chains under the influence of bias is considered where the transition
rates represent arbitrary potentials. An exact expression for the stationary current is given and verified by
numerical simulations. It exhibits rectification effects for nonsymmetric potentials in the regime of strong bias.
Applications to two- and three-dimensional systems are indica84063-651X97)50909-3

PACS numbgs): 05.40:+j, 68.35.Fx, 87.22.Fy

The motion of particles in nonsymmetric potentials underrent between sité and|+1 is given in terms of the site
the influence of stochastic forces is of great current interesbccupation probabilitie®, by
for several reasons. One problem is to understand the condi- B K2 K2
tions under which unidirectional motion of the particles can =L@ P =T 8 Py @

occur. Apparently, there is a connection of this problem toFI+1I is the rate for a transition from site to site | + 1

;hrz isr?t(:r)ggtiIr?wrgratt?oer:;nggmgg%ﬁizl rlr?ozgﬁlgr?g, ;herebio\{vhich is multiplied by the bias fact@*/? and the rate for the
logical s sterr?s{Z—8] or surface diffusion robIemEQ 18] reverse transitiorl’, |, is multiplied by the inverse bias

gical Sy . P '~ . factor. It is assumed that an equilibrium state exists in the
There is agreement that under the influence of thermal noisg, : _ s .

R i : . ; . . -absence of biasKk=0. The condition of detailed balance
a particle in a static nonsymmetric potential without bias will A
. . L holds for the equilibrium state,

not move uniformly in one direction. In the presence of fluc-
'guatmg external fqrc;es Wlth suff_|C|entIy Io'ng. corrglatlon T, Pf=T, . P9, )
times, however, unidirectional motion can arise; that is, such
potentials exhibit rectification properties with respect to thewith the equilibrium site probabilities given by
slowly varying components of the external force. Most of the
previous work in this area is based on continuous diffusion . g Nt -1
models that are defined in terms of Langevin-type equations PPi=exp(— BE)) N Z exp(—BE,) | . 3
of motion[2-5,7,8,11-1B However, the apparent relevance

of such models to problems of transport on MICroscopiqy, the stationary situation the current between any pair of
scales suggest a treatment that at least in principle can aggighpor sites must be the sandes J; for all I. We express
count for a specific microscopic environment. The simplest, o crrent by the transition rates to the right=T 1,

microscopic models may be defined as hopping models fofi5ing the condition of detailed balan(®, and introduce the
particles on linear chains with discrete binding sites and POgecompositiorP, = P&, . We have

tential barriers in between.
From this point of view we investigate in this paper the J= Ptk —e K%h,, ). %)

hopping motion of particles in a one-dimensional discrete

model without inversion symmetry under the influence of anFrom this equation follows the recursion relation

arbitrary bias in one direction. We will give a quantitative

description of rectification effects that can appear in the re- K Jek”?

gion of nonlinear response. Rectification effects from a rate hi+1=€"h— %—pleq ®)

equation model for carrier-mediated transport through chan-

nels of biological membranes have been discussed previFhis recursion relation can be brought into the form

ously[14]. Here we treat hopping of patrticles in an arbitrary

sequence of barriers and trapping sites under periodic bound- h=e"hy—e  2JeXg, (6)

ary conditions. Hence, our calculations are also valid for pe-

riodic repetitions of potential structures without inversion with

symmetry. We emphasize that our derivations give a micro- -1
scopic description of rectification effects of hopping motion 5= 2 exp(—nK) S=0 @
through nonsymmetric potentials. Possible applications of n=o  yaPR% '

our model are outlined at the end of this paper.

Consider a chain consisting di+1 sites|=0,... N  We want to eliminatehy in favor of Sy. This can be
with site energie€,, where we assume periodic boundary achieved by writing Eq(6) for | =N and solving with re-
conditions, i.e.Eq=Ey . In the stationary situation, the cur- spect toh,. Note thathy=hy as a consequence of the peri-
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odic boundary conditions. Inserting the result into EG).

and multiplying withP;9 we obtain 0.25
0.2
SN .
eq_ peqn(l—1/2K _
hPr=Pi"e J( —em—NK ) ©® , 0I5
Equation(8) represents the probability of finding the particle 0.1
on sitel in the stationary situation; this quantity must be 0.05
normalized to unity. From the normalization condition fol- ’
lows the expression for the current per particle 0
1 N-1 N-1
_ K2 b
I=e (1 A NK & 12 5
N-1 -1 1 -1 FIG. 1. Particle currend (arbitrary unit$ as a function of the
— f| ) (9) dimensionless bias parametemn a model with Schwoebel barriers
=1 i=o0 ¥nfn with N= 10 sites(see inset The relative hopping rates to the right

aree™ 2 at the barrier and out of the trap, the rate out of the trap to
The quantityf, is defined byf;=Pf%'¥. Expression(9) can  the left is e~*. Points: simulations, full lines: complete theory,
be regarded as the discrete analogue of the stationary curretiished lines: asymptotic theory.
derived by Ambegaokar and Halperjt5] in their classic

work on a driven Smoluchowski system. arranged, implying the absence of rectification effects.
A more transparent form fod can be achieved by rear- Hence, models that include varying site enerdigsare re-
rangements of the sums, quired for the occurrence of rectification effects.
_ _1 Before we discuss specific cases of rectification, a remark
J=(eNK—1) Z Y| (10 concerning hopplng models for the cgrre'nt through mem-
=0 7y exp—pBE)/ ’ brane channels, which have been studied in biologically mo-
tivated works[19-21], is in order. The boundary conditions
with that are used there differ from those used here. In the works
| N-1 on transport across membranes the concentraiBgrad Py
v, =N MKE (-DK-fEnf g=KI2 3 g(n-DK-pEq at both sites of the_ mer_nbrane are given quantities, corre-
=, S ’ sponding to a chemical bias. In Rg21] saturation effects of

(11) the channels are included, with the restriction of at most one
particle per channel, whereas in this work we normalized the
where the last term is taken to be zerd #N—1. Equation  current to exactly one particle per “channel.” Some formal
(10) is the final result of the formal derivations. It is easily similarities between the expression for the current given in
examined on simple examples that the arrangement of barri¢p1] and our results can be recovered for large concentrations
and of site energies is relevant for the magnitude of the rep, andP,, such that each channel is occupied by a particle.

sulting current, for arbitrary bias. _ We now turn to a comparison of our general formula Egs.
The well-known result for the linear response regime(10) and(11) with numerical simulations. We first study the
[16,17 is easily deduced from Eq¢l0) and(11), model of particle diffusion in a potential that represents
N—1 . Schwoebel barriers which are relevant for diffusion on sur-
_ eqy—1 faces[9,10]. The model is depicted in Fig. (see insetand
J K( Z (1P ) ' (12 it has no inversion symmetry. Results of the numerical simu-

lations are shown in this figure as functions of the bias pa-

By virtue of detailed balance, E¢2), the current Eq(12)  rametetb=exp(K|/2), together with the analytical result ac-
can also be expressed in terms of the left transition probabilicording to Eq. (10). One recognizes perfect agreement
ties. Rectification effects are absent in the linear-responsgetween theory and simulations.
regime, i.e., the current Eq12) simply changes sign if the It is seen that the currents are linear in the bias parameter
sign of K is reversed. Note also that the terms under the sur for b>1. This behavior is easily deduced from the recur-
can be arbitrarily rearranged. sion relations Eqg(1). We assume the bias to be so strong

Next we consider nonlinear transport in the barrier modethat we can neglect the reverse hopping processes. Under this
with constant site energids; =0, where the transition rates assumption the recursion relations simplify #>0)
are symmetricl';, ,=I"} |, 4, cf. also Eq.(2). From Egs.

(10) and(11) we immediately obtain Ji=v expK/2)P;. (14)
-1
J= 25|n)‘( )( 2 Y ) ' (13  We takeJ;=J and solve the equation with respect Rp.
Normalization of theP, yields

systems with quenched disordé8]. Obviously, also in this _

expression the contributions of individual barriers can be re-

which has been derived before in the context of transport in -1
( 2 ) (15
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over to the asymptotic behavior occurs for larger valuels of
for the bias direction with the larger current, and for smaller

01 b values in the opposite direction. The correction to the

0.01 asymptotic behavior of the current is governed by hopping

7 0001 processes along the chain with all except one transitions in

bias direction. Taking all possibilities of zero and one tran-

0.0001 sitions in the reverse bias direction into account, one obtains
0.00001 the current forK >0,

I 15 2 3 5 7 10, 15.20. P L I
b J=e |Zo 7|+e 20 NYi+1 ’ a0

FIG. 2. Particle currend (arbitrary unit3 as a function of the where they,,y/ are defined as above. The corresponding
bias parametelb in a staircase model witN=>5 sites. The relative  formula forK <0 is easily given. Equatiofl7) predicts bias
right hopping rates are™?, the relative left hopping rate over the yalues where the current is 90% of the asymptotic current, of
barrier is e % Points: simulations, full lines: complete theory, b=3 (right curren}, b=1.48 (left curren} for the example
dashed lines: asymptotic theory. of Fig. 1, andb="7.31 (right curreny, b=1.53(left curren}

: . S . for the example of Fig. 2. The figures verify the predictions.
The current in the region of large bias is determined by the | | summaFr)y, we hgve given g microscc%ic depscription of

inverse of the sum over the inverse transition rates in direc-_ ... __.. . .
. . . o rectification effects of hopping motion through nonsymmet-
tion of the bias. If the direction is reverseéd<0, we have hping g y

ric potentials under the influence of strong bias. The connec-
-1 tion of our derivations to particle transport through channels
, (16)  in membranes has already been mentioned. We point out that
the applicability of this investigation is not restricted to lin-
N ) ear systems such as channels with nonsymmetric potentials.
wherey/ =TI, |, are the left transition rates. Equatioll$)  The results can also be extended to two- or three-
and(16) are represented by dashed lines in Fig. 1; the comgimensional systems, for instance, to stepped surfaces or to
plete theory and the numerical results approach theayered systems. If the underlying structure has a nonsym-
asymptotic behavior. o _ metric potential inx direction, and periodic, uniform poten-
The result for strong bias immediately suggests that &jas iny andz directions, the results can be applied directly.
large ratio between right and left current is achieved by therne reason is that hopping of particles in these directions is
choice of a potential as depicted in the inset of Fig. 2. Thangependent of the direction. If a bias is applied in the
right and left currents in such a model were determined byjjrection, the current will then show the nonlinear depen-
numerical simulations and they are presented in Fig. 2 togence discussed above, while there is only diffusion in the
gether with the full and asymptotic results. There is agreeyyg other directions. The situation would be completely dif-
ment of the simulations with the complete result and ongerent if there were defects in the structures. Also the influ-
r(_ecognizes that.the asymptotic behavior is reached for suffispce of many particles that compete for the sites is not
ciently strong bias. known. See, however, in this contd22,23, where already

~ The discrete nature of our model also enables us to proygtion of many particles in nonsymmetric potentials is con-
vide a general estimate of the cross-over bias beyond whicliqered.

the induced current is driven to the limiting behavior implied .
by Egs.(15) and(16). Note that in Figs. 1 and 2 the cross- We thank G. Schiz and G. Stark for discussions.

N—-1

J=e‘K’2( 2 ()
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