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Rectification by hopping motion through nonsymmetric potentials with strong bias
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Hopping motion of particles on linear chains under the influence of bias is considered where the transition
rates represent arbitrary potentials. An exact expression for the stationary current is given and verified by
numerical simulations. It exhibits rectification effects for nonsymmetric potentials in the regime of strong bias.
Applications to two- and three-dimensional systems are indicated.@S1063-651X~97!50909-3#

PACS number~s!: 05.40.1j, 68.35.Fx, 87.22.Fy
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The motion of particles in nonsymmetric potentials und
the influence of stochastic forces is of great current inte
for several reasons. One problem is to understand the co
tions under which unidirectional motion of the particles c
occur. Apparently, there is a connection of this problem
the second law of thermodynamics@1,2#. In addition, there
are interesting relations between this model and, e.g.,
logical systems@2–8# or surface diffusion problems@9,10#.
There is agreement that under the influence of thermal n
a particle in a static nonsymmetric potential without bias w
not move uniformly in one direction. In the presence of flu
tuating external forces with sufficiently long correlatio
times, however, unidirectional motion can arise; that is, s
potentials exhibit rectification properties with respect to
slowly varying components of the external force. Most of t
previous work in this area is based on continuous diffus
models that are defined in terms of Langevin-type equati
of motion@2–5,7,8,11–13#. However, the apparent relevanc
of such models to problems of transport on microsco
scales suggest a treatment that at least in principle can
count for a specific microscopic environment. The simpl
microscopic models may be defined as hopping models
particles on linear chains with discrete binding sites and
tential barriers in between.

From this point of view we investigate in this paper t
hopping motion of particles in a one-dimensional discr
model without inversion symmetry under the influence of
arbitrary bias in one direction. We will give a quantitativ
description of rectification effects that can appear in the
gion of nonlinear response. Rectification effects from a r
equation model for carrier-mediated transport through ch
nels of biological membranes have been discussed pr
ously @14#. Here we treat hopping of particles in an arbitra
sequence of barriers and trapping sites under periodic bo
ary conditions. Hence, our calculations are also valid for
riodic repetitions of potential structures without inversi
symmetry. We emphasize that our derivations give a mic
scopic description of rectification effects of hopping moti
through nonsymmetric potentials. Possible applications
our model are outlined at the end of this paper.

Consider a chain consisting ofN11 sites l 50, . . . ,N
with site energiesEl , where we assume periodic bounda
conditions, i.e.,E05EN . In the stationary situation, the cu
561063-651X/97/56~3!/2351~4!/$10.00
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rent between sitel and l 11 is given in terms of the site
occupation probabilitiesPl by

Jl5G l 11,le
K/2Pl2G l ,l 11e2K/2Pl 11 . ~1!

G l 11,l is the rate for a transition from sitel to site l 11,
which is multiplied by the bias factoreK/2 and the rate for the
reverse transitionG l ,l 11 is multiplied by the inverse bias
factor. It is assumed that an equilibrium state exists in
absence of bias,K50. The condition of detailed balanc
holds for the equilibrium state,

G l 11,l Pl
eq5G l ,l 11Pl 11

eq , ~2!

with the equilibrium site probabilities given by

Pl
eq5exp~2bEl !S 1

N (
n50

N21

exp~2bEn!D 21

. ~3!

In the stationary situation the current between any pair
neighbor sites must be the same,J5Jl for all l . We express
the current by the transition rates to the right,g l[G l 11,l ,
using the condition of detailed balance~2!, and introduce the
decompositionPl5Pl

eqhl . We have

J5g l Pl
eq~eK/2hl2e2K/2hl 11!. ~4!

From this equation follows the recursion relation

hl 115eKhl2
JeK/2

g l Pl
eq . ~5!

This recursion relation can be brought into the form

hl5elKh02e2K/2JelKSl , ~6!

with

Sl5 (
n50

l 21
exp~2nK!

gnPn
eq , S050. ~7!

We want to eliminateh0 in favor of SN . This can be
achieved by writing Eq.~6! for l 5N and solving with re-
spect toh0 . Note thath0[hN as a consequence of the pe
R2351 © 1997 The American Physical Society
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odic boundary conditions. Inserting the result into Eq.~6!
and multiplying withPl

eq we obtain

hl Pl
eq5Pl

eqe~ l 21/2!KJS SN

12exp~2NK!
2Sl D . ~8!

Equation~8! represents the probability of finding the partic
on site l in the stationary situation; this quantity must b
normalized to unity. From the normalization condition fo
lows the expression for the current per particle

J5eK/2S 1

12exp~2NK! (
l 50

N21

f l (
n50

N21
1

gnf n

2 (
l 51

N21

f l (
n50

l 21
1

gnf n
D 21

. ~9!

The quantityf l is defined byf l[Pl
eqelK . Expression~9! can

be regarded as the discrete analogue of the stationary cu
derived by Ambegaokar and Halperin@15# in their classic
work on a driven Smoluchowski system.

A more transparent form forJ can be achieved by rear
rangements of the sums,

J5~eNK21!S (
l 50

N21
Yl

g l exp~2bEl !
D 21

, ~10!

with

Yl5e~N21/2!K (
n50

l

e~n2 l !K2bEn1e2K/2 (
n5 l 11

N21

e~n2 l !K2bEn,

~11!

where the last term is taken to be zero ifl 5N21. Equation
~10! is the final result of the formal derivations. It is easi
examined on simple examples that the arrangement of ba
and of site energies is relevant for the magnitude of the
sulting current, for arbitrary bias.

The well-known result for the linear response regim
@16,17# is easily deduced from Eqs.~10! and ~11!,

J5KS (
l 50

N21

~g l Pl
eq!21D 21

. ~12!

By virtue of detailed balance, Eq.~2!, the current Eq.~12!
can also be expressed in terms of the left transition proba
ties. Rectification effects are absent in the linear-respo
regime, i.e., the current Eq.~12! simply changes sign if the
sign ofK is reversed. Note also that the terms under the s
can be arbitrarily rearranged.

Next we consider nonlinear transport in the barrier mo
with constant site energiesEl50, where the transition rate
are symmetric,G l 11,l5G l ,l 11 , cf. also Eq.~2!. From Eqs.
~10! and ~11! we immediately obtain

J52 sinhS K

2 D S (
l 50

N21

g l
21D 21

, ~13!

which has been derived before in the context of transpor
systems with quenched disorder@18#. Obviously, also in this
expression the contributions of individual barriers can be
ent
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arranged, implying the absence of rectification effec
Hence, models that include varying site energiesEl are re-
quired for the occurrence of rectification effects.

Before we discuss specific cases of rectification, a rem
concerning hopping models for the current through me
brane channels, which have been studied in biologically m
tivated works@19–21#, is in order. The boundary condition
that are used there differ from those used here. In the wo
on transport across membranes the concentrationsP0 andPN
at both sites of the membrane are given quantities, co
sponding to a chemical bias. In Ref.@21# saturation effects of
the channels are included, with the restriction of at most o
particle per channel, whereas in this work we normalized
current to exactly one particle per ‘‘channel.’’ Some form
similarities between the expression for the current given
@21# and our results can be recovered for large concentrat
P0 andPN , such that each channel is occupied by a partic

We now turn to a comparison of our general formula E
~10! and~11! with numerical simulations. We first study th
model of particle diffusion in a potential that represen
Schwoebel barriers which are relevant for diffusion on s
faces@9,10#. The model is depicted in Fig. 1~see inset! and
it has no inversion symmetry. Results of the numerical sim
lations are shown in this figure as functions of the bias
rameterb[exp(uKu/2), together with the analytical result ac
cording to Eq. ~10!. One recognizes perfect agreeme
between theory and simulations.

It is seen that the currents are linear in the bias param
b for b@1. This behavior is easily deduced from the recu
sion relations Eq.~1!. We assume the bias to be so stro
that we can neglect the reverse hopping processes. Unde
assumption the recursion relations simplify to (K.0)

Jl5g l exp~K/2!Pl . ~14!

We takeJl5J and solve the equation with respect toPl .
Normalization of thePl yields

J5eK/2S (
l 50

N21

g l
21D 21

. ~15!

FIG. 1. Particle currentJ ~arbitrary units! as a function of the
dimensionless bias parameterb in a model with Schwoebel barrier
with N510 sites~see inset!. The relative hopping rates to the righ
aree22 at the barrier and out of the trap, the rate out of the trap
the left is e24. Points: simulations, full lines: complete theor
dashed lines: asymptotic theory.
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The current in the region of large bias is determined by
inverse of the sum over the inverse transition rates in dir
tion of the bias. If the direction is reversed,K,0, we have

J5e2K/2S (
l 50

N21

~g l8!21D 21

, ~16!

whereg l8[G l ,l 11 are the left transition rates. Equations~15!
and ~16! are represented by dashed lines in Fig. 1; the co
plete theory and the numerical results approach
asymptotic behavior.

The result for strong bias immediately suggests tha
large ratio between right and left current is achieved by
choice of a potential as depicted in the inset of Fig. 2. T
right and left currents in such a model were determined
numerical simulations and they are presented in Fig. 2
gether with the full and asymptotic results. There is agr
ment of the simulations with the complete result and o
recognizes that the asymptotic behavior is reached for s
ciently strong bias.

The discrete nature of our model also enables us to
vide a general estimate of the cross-over bias beyond w
the induced current is driven to the limiting behavior impli
by Eqs.~15! and ~16!. Note that in Figs. 1 and 2 the cros

FIG. 2. Particle currentJ ~arbitrary units! as a function of the
bias parameterb in a staircase model withN55 sites. The relative
right hopping rates aree22, the relative left hopping rate over th
barrier is e210. Points: simulations, full lines: complete theor
dashed lines: asymptotic theory.
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over to the asymptotic behavior occurs for larger values ob
for the bias direction with the larger current, and for smal
b values in the opposite direction. The correction to t
asymptotic behavior of the current is governed by hopp
processes along the chain with all except one transition
bias direction. Taking all possibilities of zero and one tra
sitions in the reverse bias direction into account, one obta
the current forK.0,

J5eK/2S (
l 50

N21
1

g l
1e2K (

l 50

N21 g l 118

g lg l 11
D 21

, ~17!

where theg l ,g l8 are defined as above. The correspond
formula forK,0 is easily given. Equation~17! predicts bias
values where the current is 90% of the asymptotic current
b53 ~right current!, b51.48 ~left current! for the example
of Fig. 1, andb57.31 ~right current!, b51.53 ~left current!
for the example of Fig. 2. The figures verify the prediction

In summary, we have given a microscopic description
rectification effects of hopping motion through nonsymm
ric potentials under the influence of strong bias. The conn
tion of our derivations to particle transport through chann
in membranes has already been mentioned. We point out
the applicability of this investigation is not restricted to lin
ear systems such as channels with nonsymmetric poten
The results can also be extended to two- or thr
dimensional systems, for instance, to stepped surfaces o
layered systems. If the underlying structure has a nons
metric potential inx direction, and periodic, uniform poten
tials in y andz directions, the results can be applied direct
The reason is that hopping of particles in these direction
independent of thex direction. If a bias is applied in thex
direction, the current will then show the nonlinear depe
dence discussed above, while there is only diffusion in
two other directions. The situation would be completely d
ferent if there were defects in the structures. Also the infl
ence of many particles that compete for the sites is
known. See, however, in this context@22,23#, where already
motion of many particles in nonsymmetric potentials is co
sidered.

We thank G. Schu¨tz and G. Stark for discussions.
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